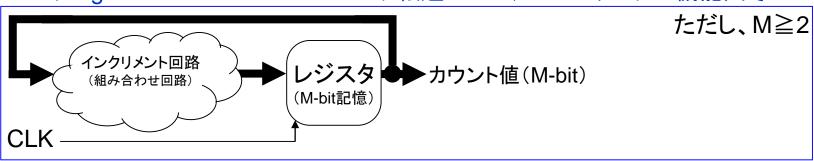

カウンタの設計 ~RTLでの機能図~


RTL(Register Transfer Level:レジスタ転送レベル)での一般的回路機能図

RTL(Register Transfer Level:レジスタ転送レベル)でのカウンタの機能図その1

RTL(Register Transfer Level:レジスタ転送レベル)でのカウンタの機能図その2

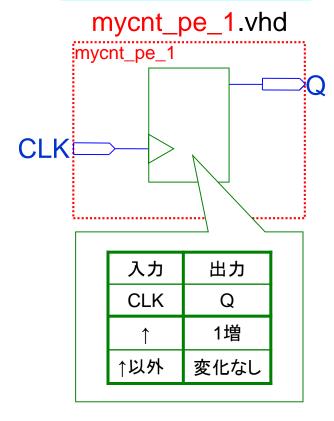
(例)カウンタの機能記述① 基本カウンタ

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能

基本カウンタ

- ・ポジティブエッジトリガ
- ・1-bitカウント
- → ・付加機能なし のカウンタ

入出カポートの記述


```
port(
   CLK : in std_logic;
   Q : out std_logic
);
```

各種宣言の記述

```
signal Y : std logic;
```

回路機能の記述

```
process(CLK)
begin
  if(CLK'event and CLK='1')then
    Y <= not Y;
  end if;
end process;
Q <= Y;</pre>
```


【注】エンティティ名の「_pe」はポジティブエッジトリガを、「_1」は1-bitカウントを意図している

2プロセス

(例)カウンタの機能記述② 多ビットカウンタ

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - ・カウントビット数
 - •付加機能

カウントビット数: M

- ・ポジティブエッジトリガ
- M-bitカウント
- → ・付加機能なし のカウンタ

```
ジェネリック宣言の記述
               generic (M:integer:=4);
```

入出カポートの記述

```
port (
  CLK: in std logic;
  Q : out std logic vector (M-1 downto 0)
```

各種宣言の記述

```
signal Y: std logic vector (M-1 downto 0);
```

回路機能の記述

```
process (CLK)
begin
  if (CLK'event and CLK='1') then
                                           2プロセス
     Y <= Y + '1';
  end if;
end process;
\circ <= Y;
```

K. Ichijo, Hirosaki University p.3

mycnt_pe_M.vhd mycnt_pe_M CLK 入力 出力 CLK 1増 ↑以外 変化なし

【注】エンティティ名の 「 **M**」はM-bitカウントを意図している

(例)カウンタの機能記述③ 1ビット→多ビット

1ビットカウンタ

多ビットカウンタ

ジェネリック宣言の記述

```
generic(M:integer:=4);
```

入出力ポートの記述

```
port(
   CLK : in std_logic;
   Q : out std_logic
);
```

入出力ポートの記述

```
port(
   CLK : in std_logic;
   Q : out std_logic_vector(M-1 downto 0)
);
```

回路機能の記述

```
process(CLK)
begin
  if(CLK'event and CLK='1')then
    Y <= not Y;
  end if;
end process;
Q <= Y;</pre>
```

回路機能の記述

```
process(CLK)
begin
  if(CLK'event and CLK='1')then
    Y <= Y + '1';
  end if;
end process;
Q <= Y;</pre>
```

- ✓ 変更の容易性を鑑みて、カウントビット数をジェネリック宣言で用意し、 カウント値出力ポートをstd logic vector型に変更。
- ✓ 回路機能は、トグル動作では対応できないので、インクリメントに変更。

(例)カウンタの機能記述④ 付加機能一覧

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - ·付加機能

14種類の付加機能

継むの作用と

- ・ポジティブエッジトリガ
- •M-bitカウント
- 付加機能?????

のカウンタ

×

複数の機能を同時に付加することもできる

		機能のための	饿肥を	機能の作用と	複数
付加機能	機能の意味	入力ポート名	有効にする	クロック信号	する
		の例	入力値	との関係	
Clear		ACLRN	0	クロック非同期	[例1]
	出力 _※ を	SCLRN	U	クロック同期	
(Reset)	常に0にする。	ACLR	4	クロック非同期	
機能		SCLR	l	クロック同期	
Lood		ALDN	0	クロック非同期	
Load	出力を 任意の値にする。	SLDN	0	クロック同期	
(Set) 機能		ALD	4	クロック非同期	
		SLD	l	クロック同期	[例2]
Clock Enable	クロック入力を	CEN	0		[例3]
機能	許可する。	CE	1		
Output Control 機能	出力 _※ を High Impedance	OCN	0		
	にする。 <u>≫</u>	OC	1		<u>(例4)</u>
U p/ D own切替	カウント増/減を	UND	0 ⇒U ,1 ⇒D		
機能	切り替える。	UDN	1 ⇒U ,0 ⇒D	クロック同期・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	例5)

機能のための

機能を

集合体で指定

出力の<u>全ビット</u>

多ビットカウントの場合、

[例1]~[例5]は

以降で具体的に例示する。

それ以外は、例を参 考に記述してみよ。

K. Ichijo, Hirosaki University p.5

(例)カウンタの機能記述⑤ 付加機能[例1]:ACLRN

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能

clock Async. CLeaR Negative
ACLRN

付加機能一覧へ▲

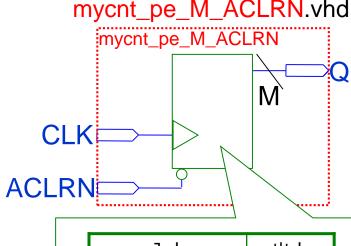
- ・ポジティブエッジトリガ
- •M-bitカウント
- ·付加機能:ACLRN

のカウンタ

```
ジェネリック宣言の記述
```

generic(M:integer:=4);

入出力ポートの記述


```
port(
   CLK, ACLRN : in std_logic;
   Q : out std_logic_vector(M-1 downto 0)
);
```

各種宣言の記述

signal Y : std_logic_vector(M-1 downto 0);

回路機能の記述

```
process (ACLRN, CLK)
begin
  if (ACLRN='0') then
    Y <= (others=>'0');
elsif(CLK'event and CLK='1') then
    Y <= Y + '1';
end if;
end process;
Q <= Y;</pre>
```


入	出力		
ACLRN	CLK	Q	
0	_	0クリア	
1	1	1増	
ı	↑以外	変化なし	

【注】エンティティ名に付加機能の意を含めている

2プロセス

(例)カウンタの機能記述⑥ 付加機能[例2]:SLD

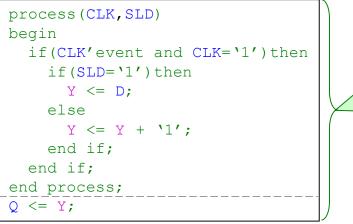
- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能

```
clock Synchronous LoaD
SLD
```

付加機能一覧へ▲

- ・ポジティブエッジトリガ
- •M-bitカウント
- ·付加機能:SLD
- のカウンタ

```
ジェネリック宣言の記述 generic (M:integer:=4);
```


入出力ポートの記述

```
port(
   CLK, SLD : in std_logic;
   D : in std_logic_vector(M-1 downto 0);
   Q : out std_logic_vector(M-1 downto 0)
);
```

各種宣言の記述

```
signal Y : std_logic_vector(M-1 downto 0);
```

回路機能の記述

mycnt_pe_N	∄_SLD .vhd
mycnt_pe_M_	SLD
D	
M	M
CLK	
SLD	
· · · · · · · · · · · · · · · · · · ·	

	出力				
CLK	SLD	D	Q		
•	1	-	D		
	0	-	1増		
↑以外 -		-	変化なし		

【注】エンティティ名に付加機能の意を含めている

(例)カウンタの機能記述⑦ 付加機能[例3]:CEN

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能
 - •追加出力

```
Clock Enable Negative
      CEN
```

付加機能一覧へ▲

・ポジティブエッジトリガ

•M-bitカウント

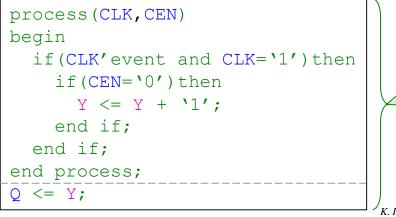
·付加機能:CEN

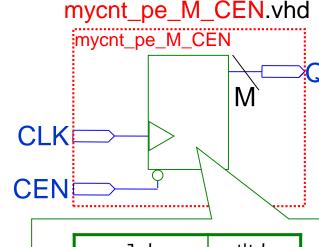
・追加出力なし

のカウンタ

```
ジェネリック宣言の記述
```

generic(M:integer:=4);


入出カポートの記述


```
port (
  CLK, CEN: in std logic;
  Q : out std logic vector (M-1 downto 0)
```

各種官言の記述

signal Y : std logic vector(M-1 downto 0);

回路機能の記述

入	出力			
CLK	CEN	Q		
•	0	1増		
	1	赤ルか		
↑以外	_	変化なし		

【注】エンティティ名に付加機能の意を含めている

K. Ichijo, Hirosaki University p.8

2プロセス

(例)カウンタの機能記述® 付加機能[例4]:OC

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能

```
Output Control
OC
```

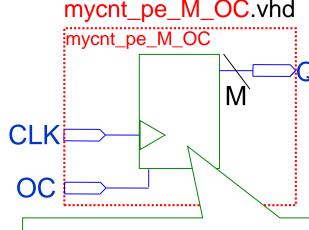
付加機能一覧へ▲

- ・ポジティブエッジトリガ
- •M-bitカウント
- → ·付加機能:OC
 - のカウンタ

```
ジェネリック宣言の記述
```

```
generic(M:integer:=4);
```

入出力ポートの記述


```
port(
   CLK, OC : in std_logic;
   Q : out std_logic_vector(M-1 downto 0)
);
```

各種宣言の記述

```
signal Y : std logic vector(M-1 downto 0);
```

<u>回路機能の記述</u>

```
process(CLK)
begin
  if(CLK'event and CLK='1')then
    Y <= Y + '1';
  end if;
end process;
Q <= (others=>'Z') when(OC='1') else Y;
```


入力	J	出力		
CLK	ОС	Q		
1		1増		
↑以外	0	変化なし		
-	1	High Impedance		

【注】エンティティ名に付加機能の意を含めている

ロセス

(例)カウンタの機能記述⑨ 付加機能[例5]:UDN

- ●カウンタの機能記述
 - ・ポジティブ/ネガティブ エッジトリガ
 - カウントビット数
 - •付加機能

Up count/ Down count Neg.

付加機能一覧へ▲

- ・ポジティブエッジトリガ
- •M-bitカウント
- ·付加機能:UDN

のカウンタ

```
ジェネリック宣言の記述
```

generic(M:integer:=4);

入出カポートの記述

```
port(
   CLK, UDN : in std_logic;
   Q : out std_logic_vector(M-1 downto 0)
);
```

各種宣言の記述

```
signal Y : std logic vector(M-1 downto 0);
```

回路機能の記述

```
process(CLK,UDN)
begin
  if(CLK'event and CLK='1')then
   if(UDN='1')then
        Y <= Y + '1';
   else
        Y <= Y + (M-1 downto 0=>'1');
   end if;
  end process;
Q <= Y;</pre>
```

2プロセス

mycnt_pe_M_UDN.vhd

mycnt_pe_M_UDN

CLK

UDN

入		出力		
CLK	UDN	Q		
1	1	1増		
	0	1減		
↑以外 -		変化なし		

【注】エンティティ名に付加機能の意を含めている

■必須課題■

以下のカウンタのプロジェクトについての設計をせよ。

■ mycnt_pe_M_ACLR_CE_SLD

なお、

- ✓_peは、ポジティブエッジトリガの意味である。
- ✓ Mは、M-bitカウントの意味である。
- ✓Mはジェネリック宣言で指定できるようにすること。
- ✓ _ACLR, _CE, _SLDは、 付加機能一覧の表の「機能のための入力ポート名の例」と同じとして考えよ。≫

▲追加課題▲

以下のカウンタのプロジェクトについての設計をせよ。

▲ mycnt_pe_M_ACLR_SCLR

なお、

- ✓_peは、ポジティブエッジトリガの意味である。
- ✓ Mは、M-bitカウントの意味である。
- ✓Mはジェネリック宣言で指定できるようにすること。
- ✓ _ACLR, _SCLRは、 付加機能一覧の表の「機能のための入力ポート名の例」と同じとして考えよ。≫

これまでの例の整理

Top-Level Entity名	スライド	論理回路種別	Process文	代入文	演算子	内部信号		generic宣言	モジュール化 デザイン
mynand2	VHDL-01	組み合わせ	_	信号代入	論理	_		_	_
myor3	VHDL-02	組み合わせ	_	信号代入	論理	0		_	_
mynand2xM	VHDL-02	組み合わせ	_	信号代入	論理	_	0	値渡しなし	_
mynand2_cmp_inext	VHDL-02	組み合わせ	_	信号代入 (下位Level)	論理	1		-	〇(その1)
mynand2xM_cmp_or3	VHDL-02	組み合わせ	-	信号代入 (Top/下位Level)	論理	0	0	値渡しあり ・Top-Level (signal宣言文) ・下位Level (generic map)	○(その2)
mynand2_cmp_fg	VHDL-02	組み合わせ	_	信号代入 (下位Level)	論理	ı	0	値渡しあり ・Top-Level (for-generate文)	○(その3)
myadderM	VHDL-03	組み合わせ	_	信号代入	算術(+)	_		_	_
myshift1	VHDL-03	組み合わせ	_	信号代入	連接(&)	_		_	_
mydec1to2	VHDL-03	組み合わせ	_	条件付信号代入	関係	_		_	_
myenc4to2	VHDL-04	組み合わせ	O(if)	信号代入	関係	1		_	_
mydec1to2	VHDL-04	組み合わせ	O(case)	信号代入	なし	1		_	_
myandM	VHDL-04	組み合わせ	O (for-loop)	変数代入	論理	1	0	値渡しあり (for-loop文)	_
myreg_***	VHDL-05	順序(記憶要素)	O(if)	信号代入 条件付信号代入	論理	0	0	値渡しあり (signal宣言文、集合体)	_
mycnt_***	VHDL-06	順序	O(if)	信号代入 条件付信号代入	算術(+)	0	0	値渡しあり (signal宣言文、集合体)	_

さまざまなバリエーションで学習済

